
astwro Documentation
Release 0.7.5

Mikolaj Kaluszynski

Oct 05, 2020

Contents:

1 Installation 3
1.1 Installation through PyPI . 3
1.2 Dependencies . 3
1.3 github Installation . 3

2 Configuration 5
2.1 astwro.cfg configuration file . 5

3 astwro.pydaophot 7
3.1 Daphot/Allstar opt-configuration files . 7
3.2 Files and directories . 8
3.3 Operation modes - batch and parallel execution . 10
3.4 Setting image and options . 10
3.5 Logging . 10

4 gapick - Finding optimal set of PSF stars 11
4.1 Overview . 11
4.2 Parameters . 11

5 astwro.tools command line tools 15

6 Deriving a Point-Spread Function in a Crowded Field 17
6.1 following Appendix III of Peter Stetson’s User’s Manual for DAOPHOT II 17
6.2 Using pydaophot form astwro python package . 17

7 (1) Run FIND on your frame 19

8 (2) Run PHOTOMETRY on your frame 21

9 (3) SORT the output from PHOTOMETRY 23

10 (4) PICK to generate a set of likely PSF stars 25

11 (5) Run PSF 27

12 (6) Run GROUP and NSTAR or ALLSTAR on your NEI file 29

13 (8) EXIT from DAOPHOT and send this new picture to the image display 31

i

14 (9) Back in DAOPHOT II ATTACH the original picture and run SUBSTAR 33

15 (10) ATTACH the new star subtracted frame and repeat step (5) to derive a new point spread function 35

16 (11+. . .) Run GROUP NSTAR or ALLSTAR 37

17 API Reference 39
17.1 API Reference . 39

18 Indices and tables 45

19 Contact 47

Python Module Index 49

Index 51

ii

astwro Documentation, Release 0.7.5

astwro is the set of modules developed in Astronomical Institute of Wroclaw University.

It contains wrappers for daophot package, star lists (as pandas DataFrames) manipulation routines with export/import
to daophot and ds9 formats, genetic algorithm for the search for optimal PSF stars and some other stuff.

Contents: 1

https://pypi.python.org/pypi/astwro/
https://pypi.python.org/pypi/astwro/
https://pypi.python.org/pypi/astwro/

astwro Documentation, Release 0.7.5

2 Contents:

CHAPTER 1

Installation

1.1 Installation through PyPI

Use standard pip installation:

$ pip install astwro

This also installs astwro.tools command line scripts.

1.2 Dependencies

Developed of astwro have been switched to Python 3. Most of the code still works with Python 2, but support for this
version will be dropped.

The different submodules have different requirements, the common requirements are:

• pandas

• astropy

• scipy

pydaophot module, and tools that use it, requires the installation of modern Peter B. Stetson’s DAOPHOT package.
However, there is no guarantee that yours version will work with pydaophot.

The optimization of PSF stars set using genetic algorithm (astwro.tools.gapick.py tool) uses deap GA package and
bitarray.

1.3 github Installation

One can also install unreleased version from github

3

http://pip.readthedocs.org/
https://github.com/majkelx/astwro

astwro Documentation, Release 0.7.5

4 Chapter 1. Installation

CHAPTER 2

Configuration

2.1 astwro.cfg configuration file

The astwro module uses configuration file astwro.cfg.

On import, astwro is looking for astwro.cfg in the following directories:

/etc/astwro/
~/.config/astwro/
./

and reads found files in that order, overwriting repeated parameters.

The default configuration file is included in the module: [astwro path]/config/config/astwro.cfg and can be used as
template for creating user’s own ones.

Default configuration – default astwro.cfg file content:

Patches (optional) and names of executables
[executables]
daophot = sdaophot
allstar = sallstar
fnpeaks = fnpeaks
diffphot = diffphot3
sextractor = sex
scamp = scamp
sky2xy = sky2xy
xy2sky = xy2sky

Location of standard config files
[files]
daophot.opt =
allstar.opt =
photo.opt =

(continues on next page)

5

astwro Documentation, Release 0.7.5

(continued from previous page)

sextractor.conf =
sextractor.param =

6 Chapter 2. Configuration

CHAPTER 3

astwro.pydaophot

The astwro.pydaophot module provides an interface to the command line tools of Peter B. Stetson daophot and
allstar

3.1 Daphot/Allstar opt-configuration files

The module provides various options to indicate the location of following daophot configuration files:

daophot.opt
allstar.opt
photo.opt

Routines searches the following locations in the order provided:

• parameter – constructors of Daophot and Allstar objects and some routines, have parameters to indicate
the location of opt-files (e.g. the daophotopt parameter of the Daophot constructor). Also script’s command
line parameters (e.g. gapick --photo-opt) are passed as arguments to appropriate routines.

• working directory – if working directory of script process (not to be confused with Daophot object’s working
directory - runner directory!) contains opt file, this file will be used.

• astwro.cfg – the astwro configuration files contains section [files] where location of the opt files can be specified.

• default files – if module cannot locate opt file in locations below, uses the default file located in [astwro
path]/pydaophot/config.

Note, that the presented order of searching means, that e.g. the working directory daophot.opt file have priority over
another one provided in astwro.cfg.

7

astwro Documentation, Release 0.7.5

3.2 Files and directories

3.2.1 Paths

To distinguish between the working directory of the python program and the working directory of the underlying
daophot process, the following naming convention is used:

• runner directory is the working directory of the underlying daophot process. This directory accessible by the
Daophot[Allstar].dir.path property.

• working directory is current working directory of python program as obtained by os.getcwd().

3.2.2 Runner directory

Each Daophot1 object maintains it’s own runner directory. If directory is not specified in constructor, the tempo-
rary directory is created.

The runner directory is accessible by the Daophot[Allstar].dir.path property.

Daophot’s runner directory is the working directory of daophot program.

3.2.3 Specifying the file patch

For all command methods (FInd(), PHotometry(), . . .) parameters that refer to files follow the rules described
below. Understanding those rules is especially important to distinguish whether the file in runner directory or another
directory is addressed.

1. All filenames without path prefix, addresses the runner directory files.

2. Files with absolute path prefix (that is, starting with /), are. . . absolute addressed files as expected.

3. Files with relative (but not empty) path prefix, are relative to working directory.

4. Files with patch prefix starting with ~ (tilde) are relative to the user’s home directory.

In other words, file pathnames are fairly standard and reltive to script working directory, with exception than lack of
path prefix indicates file in runner directory.

During operation, all files has representation in runner directory, and underlying daophot processes only works on the
files in that directory. It’s implemented by creating symbolic link in runner directory for the input files and copying
the output files from runner directory into destination directories if such external output file is requested.

3.2.4 Runner directory file names

To avoid filename conflicts, the name of link/file in the runner directory created for external file consists of:

• hash of absolute pathname and

• original filename.

1 All information below applies to Allstar as well

8 Chapter 3. astwro.pydaophot

astwro Documentation, Release 0.7.5

3.2.5 Input files

Due to the limited length of directory paths maintained by the daophot program, for all filepaths provided to Daophot
object, the symbolic link is created in runner directory, and this link is given to the daophot process instead of the
original filename. Existing symbolic links of the same name are overwritten (because name is generated from absolute
patch it’s not a problem at all).

3.2.6 Output files

For output files, when the filename contains path component, daophot is instructed to output into the runner directory
file, then, after daophot terminates, this file(s) are copied to the path specified by the user.

Warning: The output files, existing in runner directory, are deleted on queuing command. This can lead to
unexpected behaviour in "batch" mode, when mixing input/output files. Consider following example:

d.mode = 'batch'
d.GRoup(psf_file='i.psf') # preexisting i.psf (input)
d.PSf(psf_file='i.psf') # deletes i.psf (output)
d.run() # GROUP will miss i.psf and fail

Note: In the batch mode, the copying occurs after execution of all commands in queue. This can have consequences
when using the external file as an output of one command and input of further one. Usually everything should be fine,
since the filenames generated for runner directory are deterministic as described above.

In the following example

from astwro.pydaophot import Daophot
from astwro.sampledata import fits_image

d = Daophot(image=fits_image())
d.mode = 'batch'
d.FInd(starlist_file='~/my.coo')
d.PHotometry(stars_file='~/my.coo')
d.run()

FInd() command instruct daophot to output into file 1b7afb3.my.coo in runner directory. PHotometry() com-
mand will read file 1b7afb3.my.coo from runner directory. After all 1b7afb3.my.coo will be copied to ~/my.coo.
Sometimes it’s easier to work explicitly on the files inside the runner directory :

from astwro.pydaophot import Daophot
from astwro.sampledata import fits_image

d = Daophot(image=fits_image(), batch=True)
d.FInd() # equiv: d.FInd(starlist_file='i.coo')
d.PHotometry() # equiv: d.PHotometry(starlist_file='i.coo')
d.run()
d.copy_from_runner_dir('i.coo', '~/my.coo')

User can also get patch to this file without copying

d.file_from_runner_dir('i.coo')

3.2. Files and directories 9

astwro Documentation, Release 0.7.5

or, without specifying names at all

d.FInd_result.starlist_file

3.3 Operation modes - batch and parallel execution

The execution regime of daophot commands depends on Daophot’s operation mode (this applies to any runner
subclassing the Runner class).

3.3.1 Operation modes

Property Daophot.mode (type: str) indicates operation mode:

• "normal" (default) - Every command method (FInd(), PHotometry(), . . .) blocks until the underlying
daophot process completes processing. That is intuitive behaviour. Every command is executed by brand new
daophot process, which terminates once the command execution is finished.

The ATtach() and OPtions() commands are not available in "normal" mode. Instead use
set_image() and set_options() methods that enqueue the appropriate daophot commands for exe-
cution before any other command.

• "bath" - The command methods does not trigger the underlying daophot process. Instead, commands are
stored in the internal commands queue and are send to daophot for execution together on explicitly called
run() method. All commands are executed one by one in a single daophot process, which terminates after
completion of the last command.

3.3.2 Asynchronous execution

The "bath" operation mode allows asynchronous execution by passing wait=False to the run(wait=False)
method. In that case, the run() method returns immediately after passing the commands to the underlying daophot
process. Further execution of the Python program runs in parallel to the daophot process.

The user can check if daophot is still processing commands by testing the Daophot.running property.

3.4 Setting image and options

The daophot options and the attached image are the parameters that persist in ‘daophot session. In "normal" mode
each command is executed in a separate daophot process which terminates after execution of the command, so the
configuration options and the attached image must be set before each command execution.

The ATtach() and OPtions() methods enqueues ATTACH and OPTION commands like any other command
methods and are useless in “normal”. The set_image() and set_options() methods should be used instead,
which enqueue the appropriate daophot commands for execution before every command.

3.5 Logging

The astwro.pydaophot uses the logger (from the logging module) named "pydaophot" and it’s child log-
gers.

10 Chapter 3. astwro.pydaophot

CHAPTER 4

gapick - Finding optimal set of PSF stars

4.1 Overview

gapick - [g]enetic [a]lgorithm PICK (after daophot PICK), is command line and python module for finding PSF stars
set which minimizes goal function: mean of allstar errors for all good stars in field. The “good stars” are those
which passes filtering against magnitude (brighter than minimal threshold --max-ph-mag) and against aperture
photometry error (error lower than threshold --max-ph-err).

The mineralization process is implemented as genetic algorithm, where individual is some subset of initial PSF stars
candidates.

gapick command line tool is automatically installed with pip installation of astwro package. Python function interface
is available as follows:

from astwro.tools import gapick
gapick.main(arguments)

Arguments of astwro.tools.gapick.main() corresponds to long version of command line arguments, eg
command line:

$ gapick gapick --overwite --out_dir results i.fits

is equivalent to:

from astwro.tools import gapick
gapick.main(overwrite=True, out_dir='results', image='i.fits')

image is only positional argument of commandline.

4.2 Parameters

Commandline parameters help is displayed with --help option:

11

astwro Documentation, Release 0.7.5

$ gapick --help
usage: gapick [-h] [--all-stars-file FILE] [--psf-stars-file FILE]

[--frames-av n] [--frames-sum n] [--photo-opt FILE]
[--photo-is r] [--photo-os r] [--photo-ap r [r ...]]
[--stars-to-pick n] [--faintest-to-pick MAG] [--fine]
[--max-psf-err-mult x] [--max-ph-err x] [--max-ph-mag m]
[--parallel n] [--out_dir output_dir] [--overwrite]
[--ga_init_prob x] [--ga_max_iter n] [--ga_pop n]
[--ga_cross_prob x] [--ga_mut_prob x] [--ga_mut_str x]
[--loglevel level] [--no_stdout] [--no_progress] [--version]
[image]

Find best PSF stars using GA to minimize mean error 2nd version of PSF fit
applied to all stars by allstar. Minimized function is the mean of allstar's
chi value calculated on sigma-clipped (sigma=4.0) list of all stars. Results
will be stored in --dir directory if provided. List of stars will be output to
stdout until suppressed by -no_stdout

positional arguments:
image FITS image file (default: astwro sample image for

tests)

optional arguments:
-h, --help show this help message and exit
--all-stars-file FILE, -c FILE

all stars input file in one of daophot's formats
(default: obtained by daophot FIND)

--psf-stars-file FILE, -l FILE
PSF candidates input file in one of daophot's formats,
the result of algorithm is a subset of those stars
(default: obtained by daophot PICK)

--frames-av n frames ave - parameter of daophot FIND when --all-
stars-file not provided (default: 1)

--frames-sum n frames summed - parameter of daophot FIND when --all-
stars-file not provided (default: 1)

--photo-opt FILE, -O FILE
photo.opt file for aperture photometry (default: none)

--photo-is r PHOTOMETRY inner sky radius, overwrites photo.opt,
(default: from --photo-opt or 35)

--photo-os r PHOTOMETRY outher sky radius, overwrites photo.opt,
(default: from --photo-opt or 50)

--photo-ap r [r ...] PHOTOMETRY apertures radius (up to 12), overwrites
photo.opt, (default: from --photo-opt or 8)

--stars-to-pick n, -P n
number of stars to PICK as candidates when --stars-to-
pick not provided (default: 100)

--faintest-to-pick MAG
faintest magnitude to PICK as candidates when --stars-
to-pick not provided (default: 20)

--fine, -f fine tuned PSF calculation (3 iter) for crowded
fields, without this option no neighbourssubtraction
will be performed

--max-psf-err-mult x threshold for PSF errors of candidates - multipler of
average error; candidates with PSF error greater than
x*av_err will be rejected (default 3.0)

--max-ph-err x threshold for photometry error of stars for processing
by allstar; stars for which aperture photometry

(continues on next page)

12 Chapter 4. gapick - Finding optimal set of PSF stars

astwro Documentation, Release 0.7.5

(continued from previous page)

(daophot PHOTO) error is greater than x will be
excluded form allstar run and have no effect on
quality measurment (default 0.1)

--max-ph-mag m threshold for photometry magnitude of stars for
processing by allstar; stars for which aperture
photometry (daophot PHOTO) magnitude is greater than m
(fainter than m) will be excluded form allstar run and
have no effect on quality measurement (default 20)

--parallel n, -p n how many parallel processes can be forked; n=1 avoids
parallelism (default: 8)

--out_dir output_dir, -d output_dir
output directory; directory will be created and result
files will be stored there; directory should not exist
or --overwrite flag should be set (default: do not
produce output files)

--overwrite, -o if directory specified by --out_dir parameter exists,
then ALL its content WILL BE DELETED

--ga_init_prob x, -I x
what portion of candidates is used to initialize GA
individuals; e.g. if there is 100 candidates, each of
them will be chosen to initialize individual genome
with probability x; in other words if x=0.3 first
population in GA will contain individuals with around
30 stars each; try to make size of first population
stars similar to expected number of resulting PDF
stars (default: 0.3)

--ga_max_iter n, -i n
maximum number of iterations of generic algorithm -
generations (default: 50)

--ga_pop n, -n n population size of GA (default: 80)
--ga_cross_prob x crossover probability of GA (default: 0.5)
--ga_mut_prob x mutation probability of GA - probability to became a

mutant (default: 0.2)
--ga_mut_str x mutation strength of GA - probability of every bit

flip in mutant (default: 0.05)
--loglevel level, -L level

logging level: debug, info, warning, error, critical
(default: info)

--no_stdout, -t suppress printing result (list of best choice of PSF
stars) to stdout at finish

--no_progress, -b suppress showing progress bar
--version, -v show version and exit

Note: Run gapick --help for actual set of parameters which can slightly differ from above.

4.2. Parameters 13

astwro Documentation, Release 0.7.5

14 Chapter 4. gapick - Finding optimal set of PSF stars

CHAPTER 5

astwro.tools command line tools

Astwro tools are python scripts, ready to use from command line.

Each script has --help option to display usage.

All scripts can be also used as python modules (this is the reason they have py extension). Each script exports
main(**kwargs) function which exposes it’s functionality. Also scripts exports info() function which returns
usage string – convenient way to find out script purpose and main() parameters for ones working with python
interactively.

Some of the scipts are installed in system by pip install astwro:

• gapick see: gapick - Finding optimal set of PSF stars

• grepfitshdr

15

astwro Documentation, Release 0.7.5

16 Chapter 5. astwro.tools command line tools

CHAPTER 6

Deriving a Point-Spread Function in a Crowded Field

6.1 following Appendix III of Peter Stetson’s User’s Manual for
DAOPHOT II

6.2 Using pydaophot form astwro python package

All italic text here have been taken from Stetson’s manual.

The only input file for this procedure is a FITS file containing reference frame image. Here we use sample FITS form
astwro package (NGC6871 I filter 20s frame). Below we get filepath for this image, as well as create instances of
Daophot and Allstar classes - wrappers around daophot and allstar respectively.

One should also provide daophot.opt, photo.opt and allstar.opt in apropiriete constructors. Here default,
build in, sample, opt files are used.

from astwro.sampledata import fits_image
frame = fits_image()

Daophot object creates temporary working directory (runner directory), which is passed to Allstar constructor to
share.

from astwro.pydaophot import Daophot, Allstar
dp = Daophot(image=frame)
al = Allstar(dir=dp.dir)

Daophot got FITS file in construction, which will be automatically ATTACHed.

17

astwro Documentation, Release 0.7.5

18 Chapter 6. Deriving a Point-Spread Function in a Crowded Field

CHAPTER 7

(1) Run FIND on your frame

Daophot FIND parameters Number of frames averaged, summed are defaulted to 1,1, below are provided
for clarity.

res = dp.FInd(frames_av=1, frames_sum=1)

Check some results returned by FIND, every method for daophot command returns results object.

print ("{} pixels analysed, sky estimate {}, {} stars found.".format(res.pixels, res.
→˓sky, res.stars))

9640 pixels analysed, sky estimate 12.665, 4166 stars found.

Also, take a look into runner directory

!ls $dp.dir

63d38b_NGC6871.fits allstar.opt daophot.opt i.coo

We see symlinks to input image and opt files, and i.coo - result of FIND

19

astwro Documentation, Release 0.7.5

20 Chapter 7. (1) Run FIND on your frame

CHAPTER 8

(2) Run PHOTOMETRY on your frame

Below we run photometry, providing explicitly radius of aperture A1 and IS, OS sky radiuses.

res = dp.PHotometry(apertures=[8], IS=35, OS=50)

List of stars generated by daophot commands, can be easily get as astwro.starlist.Starlist being essen-
tially pandas.DataFrame:

stars = res.photometry_starlist

Let’s check 10 stars with least A1 error (mag_err column). (pandas style)

stars.sort_values('mag_err').iloc[:10]

21

https://pandas.pydata.org

astwro Documentation, Release 0.7.5

22 Chapter 8. (2) Run PHOTOMETRY on your frame

CHAPTER 9

(3) SORT the output from PHOTOMETRY

in order of increasing apparent magnitude decreasing stellar brightness with the renumbering feature. This step is
optional but it can be more convenient than not.

SORT command of daophor is not implemented (yet) in pydaohot. But we do sorting by ourself.

sorted_stars = stars.sort_values('mag')
sorted_stars.renumber()

Here we write sorted list back info photometry file at default name (overwriting existing one), because it’s convenient
to use default files in next commands.

dp.write_starlist(sorted_stars, 'i.ap')

'i.ap'

23

astwro Documentation, Release 0.7.5

24 Chapter 9. (3) SORT the output from PHOTOMETRY

CHAPTER 10

(4) PICK to generate a set of likely PSF stars

How many stars you want to use is a function of the degree of variation you expect and the frequency with which stars
are contaminated by cosmic rays or neighbor stars. [. . .]

pick_res = dp.PIck(faintest_mag=20, number_of_stars_to_pick=40)

If no error reported, symlink to image file (renamed to i.fits), and all daophot output files (i.*) are in the working
directory of runner:

ls $dp.dir

63d38b_NGC6871.fits daophot.opt i.coo
allstar.opt i.ap i.lst

One may examine and improve i.lst list of PSF stars. Or use astwro.tools.gapick.py to obtain list of PSF
stars optimised by genetic algorithm.

25

astwro Documentation, Release 0.7.5

26 Chapter 10. (4) PICK to generate a set of likely PSF stars

CHAPTER 11

(5) Run PSF

tell it the name of your complete (sorted renumbered) aperture photometry file, the name of the file with the list of PSF
stars, and the name of the disk file you want the point spread function stored in (the default should be fine) [. . .]

If the frame is crowded it is probably worth your while to generate the first PSF with the “VARIABLE PSF” option
set to -1 — pure analytic PSF. That way, the companions will not generate ghosts in the model PSF that will come
back to haunt you later. You should also have specified a reasonably generous fitting radius — these stars have been
preselected to be as isolated as possible and you want the best fits you can get. But remember to avoid letting neighbor
stars intrude within one fitting radius of the center of any PSF star.

For illustration we will set VARIABLE PSF option, before PSf()

dp.set_options('VARIABLE PSF', 2)
psf_res = dp.PSf()

27

astwro Documentation, Release 0.7.5

28 Chapter 11. (5) Run PSF

CHAPTER 12

(6) Run GROUP and NSTAR or ALLSTAR on your NEI file

If your PSF stars have many neighbors this may take some minutes of real time. Please be patient or submit it as a
batch job and perform steps on your next frame while you wait.

We use allstar. (GROUP and NSTAR command are not implemented in current version of pydaophot). We use
prepared above Allstar object: al operating on the same runner dir that dp.

As parameter we set input image (we haven’t do that on constructor), and nei file produced by PSf(). We do not
remember name i.psf so use psf_res.nei_file property.

Finally we order allstar to produce subtracted FITS .

alls_res = al.ALlstar(image_file=frame, stars=psf_res.nei_file, subtracted_image_file=
→˓'is.fits')

All result objects, has get_buffer() method, useful to lookup unparsed daophot or allstar output:

print (alls_res.get_buffer())

63d38b_NGC6871...

Picture size: 1250 1150

File with the PSF (default 63d38b_NGC6871.psf): Input file (default
→˓63d38b_NGC6871.ap): File for results (default i.als):
→˓Name for subtracted image (default is):

915 stars. <<

I = iteration number

R = number of stars that remain

D = number of stars that disappeared
(continues on next page)

29

astwro Documentation, Release 0.7.5

(continued from previous page)

C = number of stars that converged

I R D C
1 915 0 0 <<
2 915 0 0 <<
3 915 0 0 <<
4 724 0 191 <<
5 385 0 530 <<
6 211 0 704 <<
7 110 0 805 <<
8 67 0 848 <<
9 40 0 875 <<

10 0 0 915

Finished i

Good bye.

30 Chapter 12. (6) Run GROUP and NSTAR or ALLSTAR on your NEI file

CHAPTER 13

(8) EXIT from DAOPHOT and send this new picture to the image display

Examine each of the PSF stars and its environs. Have all of the PSF stars subtracted out more or less cleanly, or
should some of them be rejected from further use as PSF stars? (If so use a text editor to delete these stars from the
LST file.) Have the neighbors mostly disappeared, or have they left behind big zits? Have you uncovered any faint
companions that FIND missed?[. . .]

The absolute path to subtracted file (like for most output files) is available as result’s property:

sub_img = alls_res.subtracted_image_file

We can also generate region file for psf stars:

from astwro.starlist.ds9 import write_ds9_regions
reg_file_path = dp.file_from_runner_dir('lst.reg')
write_ds9_regions(pick_res.picked_starlist, reg_file_path)

One can run ds9 directly from notebook:
!ds9 $sub_img -regions $reg_file_path

31

astwro Documentation, Release 0.7.5

32 Chapter 13. (8) EXIT from DAOPHOT and send this new picture to the image display

CHAPTER 14

(9) Back in DAOPHOT II ATTACH the original picture and run SUBSTAR

specifying the file created in step (6) or in step (8f) as the stars to subtract, and the stars in the LST file as the stars to
keep.

Lookup into runner dir:

ls $al.dir

63d38b_NGC6871.fits i.ap i.nei
allstar.opt i.coo i.psf
daophot.opt i.err is.fits
i.als i.lst lst.reg

sub_res = dp.SUbstar(subtract=alls_res.profile_photometry_file, leave_in=pick_res.
→˓picked_stars_file)

You have now created a new picture which has the PSF stars still in it but from which the known neighbors of these
PSF stars have been mostly removed

33

astwro Documentation, Release 0.7.5

34 Chapter 14. (9) Back in DAOPHOT II ATTACH the original picture and run SUBSTAR

CHAPTER 15

(10) ATTACH the new star subtracted frame and repeat step (5) to derive
a new point spread function

35

astwro Documentation, Release 0.7.5

36Chapter 15. (10) ATTACH the new star subtracted frame and repeat step (5) to derive a new point
spread function

CHAPTER 16

(11+. . .) Run GROUP NSTAR or ALLSTAR

for i in range(3):
print ("Iteration {}: Allstar chi: {}".format(i, alls_res.als_stars.chi.mean()))
dp.image = 'is.fits'
dp.PSf()
alls_res = al.ALlstar(image_file=frame, stars='i.nei')
dp.image = frame
dp.SUbstar(subtract='i.als', leave_in='i.lst')

print ("Final: Allstar chi: {}".format(alls_res.als_stars.chi.mean()))

Iteration 0: Allstar chi: 1.14670601093
Iteration 1: Allstar chi: 1.13409726776
Iteration 2: Allstar chi: 1.1332852459
Final: Allstar chi: 1.13326229508

Check last image with subtracted PSF stars neighbours.

!ds9 $dp.SUbstar_result.subtracted_image_file -regions $reg_file_path

Once you have produced a frame in which the PSF stars and their neighbors all subtract out cleanly, one more time
through PSF should produce a point-spread function you can be proud of.

dp.image = 'is.fits'
psf_res = dp.PSf()
print ("PSF file: {}".format(psf_res.psf_file))

PSF file: /var/folders/kt/1jqvm3s51jd4qbxns7dc43rw0000gq/T/pydaophot_tmpBVHrtR/i.psf

37

astwro Documentation, Release 0.7.5

38 Chapter 16. (11+. . .) Run GROUP NSTAR or ALLSTAR

CHAPTER 17

API Reference

17.1 API Reference

17.1.1 astwro.pydaophot Module

See also:

astwro.pydaophot

Runner classes

Daophot and Allstar are wrappers of daophot and allstar tools.

Command Results

Results of daophot and allstar commands execution are available as Output Providers objects

17.1.2 astwro.starlist Module

Star lists, are objects of class StarList which inherits directly from :class:pandas.DataFrame.

StarList class

class astwro.starlist.StarList(data=None, index=None, columns=None, dtype=None,
copy=False)

Bases: pandas.core.frame.DataFrame

static new()
Returns empty StarList instance with columns id,x,y

39

astwro Documentation, Release 0.7.5

DAO_hdr
DAO file header dict if any

DAO_type
DAO file header dict if any

import_metadata(src)
Copies metdata (dao type, dao hdr) from src

Parameters src (StarList) – source of metadata

stars_number()
returns number of stars in list

renumber(start=1)
Renumbers starlist (in place), updating id column and index to range start.. start+stars_number

refresh_id()
Cheks for id column existence and renumber if needed then recreate index basin on id

If id column exist but cannot be casted to int (by pandas.Series.to_numeric), ValueError exception is raised

to_table()
Return a astropy.table.Table instance

classmethod from_table(table)
Create a StarList from a astropy.table.Table instance

table [astropy.table.Table] The astropy astropy.table.Table instance

sl [StarList] A ‘StarList‘instance

classmethod from_skycoord(coo)
Create a StarList from a astropy.coordinates.SkyCoord instance

coo [astropy.coordinates.SkyCoord] Source

sl [StarList] A ‘StarList‘instance

radec_hmsdms_from_skycoord(coo)
Uses external xy2sky tool

radec_deg_from_hmsdms()
Uses external xy2sky tool

radec_hmsdms_from_deg()
Uses external xy2sky tool

magnitudes()
Returns magnitudes array from columns mag, A2, A3, . . .

magnitudes_err()
Returns magnitudes errors array from columns mag_err, A2_err, A3_err, . . .

IO of daophot/allstar files

astwro.starlist.daofiles.convert_dao_type(starlist, new_daotype, update_daotype=True)
Converts from one daotype to another

Only subset of conversions supported. You can also provide own map (directory) of column names

40 Chapter 17. API Reference

astwro Documentation, Release 0.7.5

astwro.starlist.daofiles.read_dao_file(file, dao_type=None)
Construct StarList from daophot output file. The header lines in file may be missing. :rtype: StarList :param
file: open stream or filename, if stream dao_type must be specified :param dao_type: file format, one of
DAO.XXX_FILE constants:

• DAO.COO_FILE

• DAO.AP_FILE

• DAO.LST_FILE

• DAO.NEI_FILE

• DAO.ALS_FILE

If missing filename extension will be used to determine file type if file is provided as filename

Returns StarList instance

astwro.starlist.daofiles.write_dao_file(starlist, file, dao_type=None, with_header=None)
Write StarList object into daophot file. :param starlist: StarList instance to be writen :param file: writable
stream or filename, if stream dao_type must be specified :param dao_type: file format, one of DAO.XXX_FILE
constants:

• DAO.COO_FILE

• DAO.AP_FILE

• DAO.LST_FILE

• DAO.NEI_FILE

• DAO.ALS_FILE

If missing extension of file will be used to determine file type if file is provided as filename

Parameters with_header – True, False or None. If None header will be written if not None in
starlist

Return type None

astwro.starlist.daofiles.dump_dao_hdr(hdr, line_prefix=”)
returns two line string representation of header dictionary :param dict hdr: dao header dictionary like
StarList.DAO_hdr :param str line_prefix: add this prefix at beginning of every line (e.g. comment char) :rtype:str

astwro.starlist.daofiles.write_dao_header(hdr, stream, line_prefix=”)
writes two lines of dao header :param dict hdr: dao header dictionary like StarList.DAO_hdr :param file stream:
to write :param str line_prefix: add this prefix at beginning of every line (e.g. comment char)

astwro.starlist.daofiles.read_dao_header(stream, line_prefix=”)
tries to read dao header, if fails returns already read characters :param file stream: open input file :param
line_prefix: additional prefix expected on the beginning of line :return: tuple (header dict, stolen chars)

if header is detected, reads 2 lines of stream and returns (dict, None) else reads couple of chars and
return (None, couple-of-chars)

astwro.starlist.daofiles.parse_dao_hdr(hdr, val, line_prefix=”)
creates dao header dict form two lines of file header :param str hdr: first line :param str val: second line :param
line_prefix: expected line prefix :return: dict with dao header compatible with StarList.DAO_header

17.1. API Reference 41

astwro Documentation, Release 0.7.5

IO of ds9 files

astwro.starlist.ds9.read_ds9_regions(file)
Reads ds9 region :param file: filename or open input stream :return: StarList object

Returned object has columns id, x, y, auto_id

Boolean column auto_id indicates weather id for item is read from file (#id=xxx comment) or generated by
function.

astwro.starlist.ds9.write_ds9_regions(starlist, filename, color=’green’, width=1, size=None,
font=None, label=’{id:.0f}’, exclude=None,
indexes=None, colors=None, sizes=None, la-
bels=None, color_column=None, size_column=None,
comment=None, add_global=None, WCS=False)

Writes ds9 region file. Some regions can be visually distinguish by providing additional indexes to select those
regions with specific attributes :param StarList starlist: StarList object to dump :param str filename: output
filename or stream open for writing :param str color: default color :param int width: default line width :param
int size: default radius (default 8px or 2”) :param str font: ds9 font specification e.g. “times 12 bold italic”
:param str label: format expression for label, use col names :param pd.Index exclude: index of disabled regions,
if None all are enabled :param [pd.Index] indexes: additional indexes to include specific color and size attributes
:param [str] colors: specific colors for indexes :param [int] sizes: specific sizes for indexes :param [str] labels:
specific labels for indexes :param str color_column: column of starlist with color values :param str size_column:
column of starlist with size values :param str add_global: content of additional ‘global’ if not None :param str
comment: content of additional comment line if not None :param bool or str WCS: If true, columns ra and dec
will be used and coord system set to ICRS

If nonepmpty string, string will be used as system description If None, False or ‘’, columns ‘x’,’y’
will be used and system set to IMAGE

Example: write_ds9_regions(sl, ‘i.reg’, color=’blue’,

indexes=[saturated, psf], colours=[‘yellow’, ‘red’], sizes=[12, None], labels=[None, ‘PDF:{id}’],
exclude=faint)

Generates regions file i.reg of blue circles, radius 8, objects present in index saturated will have larger yellow
circles objects present in index psf will be red and labeled with prefix PSF: objects present in index faint will be
disabled by ‘-‘ sign and not displayed by ds9, but can be parsed back

17.1.3 astwro.tools Module

Astwro tools are python scripts, ready to use from command line.

gapick

grepfitshdr

Grep-like tool for FITS headers

Call commandline: grepfitshdr --help for parameters info.

astwro.tools.grepfitshdr.iter_fields(hdr, onlyvalues=False, fields=None)
splits header into lines if onlyvalues does not return field names if fields returns only specified fields (forces
onlyvalues)

astwro.tools.grepfitshdr.main(pattern, file, **kwargs)
Entry point for python script calls. Parameters identical to command line

42 Chapter 17. API Reference

astwro Documentation, Release 0.7.5

astwro.tools.grepfitshdr.info()
Prints commandline help message

17.1.4 astwro.utils Module

Astwro tools are python scripts, ready to use from command line.

TmpDir

ProgressBar

CycleFile

17.1.5 astwro.sampledata Module

Module contains sample FITS file and other daophot files for testing

astwro.sampledata.fits_image()
path of FITS image of NGC6871

astwro.sampledata.coo_file()
path of coo file for fits_image()

astwro.sampledata.lst_file()
path of lst file for fits_image()

astwro.sampledata.ap_file()
path of ap file for fits_image()

astwro.sampledata.psf_file()
path of psf file for fits_image()

astwro.sampledata.als_file()
path of als file for fits_image()

astwro.sampledata.nei_file()
path of nei file for fits_image()

astwro.sampledata.head_file()
patch of sample ASCII fits header file

Warning: astwro.pydaophot and many command line tools requires compatible DAOPHOT package installed.
pydaophot should work with most of modern versions of daophot II, but is not compatible with IRAF’s daophot.

17.1. API Reference 43

astwro Documentation, Release 0.7.5

44 Chapter 17. API Reference

CHAPTER 18

Indices and tables

• genindex

• modindex

• search

45

astwro Documentation, Release 0.7.5

46 Chapter 18. Indices and tables

CHAPTER 19

Contact

For any comments or wishes please send an email to the following alias: astwro.0.5@2007.gfdgfdg.com

For any issues, use github tracker: https://github.com/majkelx/astwro/issues

47

mailto:astwro.0.5@2007.gfdgfdg.com
https://github.com/majkelx/astwro/issues

astwro Documentation, Release 0.7.5

48 Chapter 19. Contact

Python Module Index

a
astwro.sampledata, 43
astwro.starlist, 39
astwro.starlist.daofiles, 40
astwro.starlist.ds9, 42
astwro.tools, 42
astwro.tools.grepfitshdr, 42

49

astwro Documentation, Release 0.7.5

50 Python Module Index

Index

A
als_file() (in module astwro.sampledata), 43
ap_file() (in module astwro.sampledata), 43
astwro.sampledata (module), 43
astwro.starlist (module), 39
astwro.starlist.daofiles (module), 40
astwro.starlist.ds9 (module), 42
astwro.tools (module), 42
astwro.tools.grepfitshdr (module), 42

C
convert_dao_type() (in module ast-

wro.starlist.daofiles), 40
coo_file() (in module astwro.sampledata), 43

D
DAO_hdr (astwro.starlist.StarList attribute), 39
DAO_type (astwro.starlist.StarList attribute), 40
dump_dao_hdr() (in module astwro.starlist.daofiles),

41

F
fits_image() (in module astwro.sampledata), 43
from_skycoord() (astwro.starlist.StarList class

method), 40
from_table() (astwro.starlist.StarList class method),

40

H
head_file() (in module astwro.sampledata), 43

I
import_metadata() (astwro.starlist.StarList

method), 40
info() (in module astwro.tools.grepfitshdr), 42
iter_fields() (in module astwro.tools.grepfitshdr),

42

L
lst_file() (in module astwro.sampledata), 43

M
magnitudes() (astwro.starlist.StarList method), 40
magnitudes_err() (astwro.starlist.StarList

method), 40
main() (in module astwro.tools.grepfitshdr), 42

N
nei_file() (in module astwro.sampledata), 43
new() (astwro.starlist.StarList static method), 39

P
parse_dao_hdr() (in module ast-

wro.starlist.daofiles), 41
psf_file() (in module astwro.sampledata), 43

R
radec_deg_from_hmsdms() (ast-

wro.starlist.StarList method), 40
radec_hmsdms_from_deg() (ast-

wro.starlist.StarList method), 40
radec_hmsdms_from_skycoord() (ast-

wro.starlist.StarList method), 40
read_dao_file() (in module ast-

wro.starlist.daofiles), 40
read_dao_header() (in module ast-

wro.starlist.daofiles), 41
read_ds9_regions() (in module ast-

wro.starlist.ds9), 42
refresh_id() (astwro.starlist.StarList method), 40
renumber() (astwro.starlist.StarList method), 40

S
StarList (class in astwro.starlist), 39
stars_number() (astwro.starlist.StarList method),

40

T
to_table() (astwro.starlist.StarList method), 40

51

astwro Documentation, Release 0.7.5

W
write_dao_file() (in module ast-

wro.starlist.daofiles), 41
write_dao_header() (in module ast-

wro.starlist.daofiles), 41
write_ds9_regions() (in module ast-

wro.starlist.ds9), 42

52 Index

	Installation
	Installation through PyPI
	Dependencies
	github Installation

	Configuration
	astwro.cfg configuration file

	astwro.pydaophot
	Daphot/Allstar opt-configuration files
	Files and directories
	Operation modes - batch and parallel execution
	Setting image and options
	Logging

	gapick - Finding optimal set of PSF stars
	Overview
	Parameters

	astwro.tools command line tools
	Deriving a Point-Spread Function in a Crowded Field
	following Appendix III of Peter Stetson’s User’s Manual for DAOPHOT II
	Using pydaophot form astwro python package

	(1) Run FIND on your frame
	(2) Run PHOTOMETRY on your frame
	(3) SORT the output from PHOTOMETRY
	(4) PICK to generate a set of likely PSF stars
	(5) Run PSF
	(6) Run GROUP and NSTAR or ALLSTAR on your NEI file
	(8) EXIT from DAOPHOT and send this new picture to the image display
	(9) Back in DAOPHOT II ATTACH the original picture and run SUBSTAR
	(10) ATTACH the new star subtracted frame and repeat step (5) to derive a new point spread function
	(11+…) Run GROUP NSTAR or ALLSTAR
	API Reference
	API Reference

	Indices and tables
	Contact
	Python Module Index
	Index

